Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ТФ

А.В. Сорокин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.Б.6** «Физика»

Код и наименование направления подготовки (специальности): 23.03.02

Наземные транспортно-технологические комплексы

Направленность (профиль, специализация): Колесные и гусеничные машины

Статус дисциплины: обязательная часть (базовая)

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.И. Бахмат
	Зав. кафедрой «ЭЭ»	С.А. Гончаров
Согласовал	руководитель направленности	Г.Ю. Ястребов
	(профиля) программы	

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть	
ОПК-4	способностью использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении профессиональных задач	основные законы и методы математики, естественных наук при решении профессиональных задач.	использовать основные законы и методы математики, естественных наук при решении профессиональных задач.	методикой применения математических и естественных наук при решении профессиональных задач.	

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Математика, Химия	
для освоения	изучению результаты необходимы данной		
дисциплины. Дисциплины (прак которых результать данной дисципли необходимы, ка знания, умения и влих изучения.	ны будут к входные	Гидравлика Материаловедение, Электротехника и эле	и гидропневмопривод, Теоретическая механика, ектроника

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 10 / 360

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
заочная	12	8	10	330	42

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 2

Объем дисциплины в семестре з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной работы
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
6	4	6	164	22

Лекционные занятия (6ч.)

- 1. Введение. Механика. {лекция с разбором конкретных ситуаций} (2ч.) законы методы математики, И естественных используемые при решении профессиональных задач. Система отсчёта. Траектория материальной точки. Скорость. Ускорение и его составляющие. Угловая скорость и угловое ускорение. Закон Ньютона. Масса и сила. Импульс, импульс силы, закон сохранения импульса. Момент силы. Основной закон динамики вращательного движения. Момент инерции и его определение. Момент импульса и закон его сохранения. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения энергии.
- 2. Молекулярная физика и термодинамика. {лекция с разбором конкретных ситуаций} (2ч.)[4,6,9] Газовые законы идеального газа. Уравнение Клапейрона-Менделеева. Основное уравнение молекулярно-кинетической теории. Распределение Максвелла молекул по скоростям. Явления переноса. Внутренняя энергия газа. Теплота и теплоемкость. Работа газа. Первое начало термодинамики. Адиабатический процесс. Круговой процесс. Обратимые и необратимые процессы. Второе начало термодинамики. Цикл Карно и его КПД для идеального газа. Энтропия.
- 3. Электростатика и постоянный ток. {лекция с разбором конкретных ситуаций} (2ч.)[4,6] Электрические заряды. Закон Кулона. Напряженность и поток вектора напряженности в электрическом поле. Теорема Гаусса и её применение. Потенциал электрического поля и его связь с напряженностью. Поляризация диэлектриков. Электроемкость проводников. Конденсаторы. Энергия электрического поля. Электрический ток и его характеристики. Электродвижущая сила. Разность потенциалов и напряжение. Электрическое сопротивление при последовательном и параллельном соединениях. Закон Ома для участка и полной цепи. Работа и мощность тока. Законы Кирхгофа. Токи в средах.

Практические занятия (6ч.)

1. Механика. (тренинг) (2ч.) (6,7) Система отсчёта. Траектория материальной точки. Скорость. Ускорение и его составляющие. Угловая скорость и угловое ускорение. Закон Ньютона. Масса и сила. Импульс, импульс силы, закон сохранения импульса. Момент силы. Основной закон динамики вращательного

движения. Момент инерции и его определение. Момент импульса и закон его сохранения. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения энергии.

- 2. Молекулярная физика и термодинамика {тренинг} (2ч.)[5,6,7] Газовые законы идеального газа. Уравнение Клапейрона-Менделеева. Основное уравнение молекулярно-кинетической теории. Распределение Максвелла молекул по скоростям. Явления переноса. Внутренняя энергия газа. Теплота и теплоемкость. Работа газа. Первое начало термодинамики. Адиабатический процесс. Круговой процесс. Обратимые и необратимые процессы. Второе начало термодинамики. Цикл Карно и его КПД для идеального газа. Энтропия.
- **3.** Электростатика {тренинг} (2ч.)[5,6,7] Электрические заряды. Закон Кулона. Напряженность и поток вектора напряженности в электрическом поле. Теорема Гаусса и её применение. Потенциал электрического поля и его связь с напряженностью. Поляризация диэлектриков. Электроемкость проводников. Конденсаторы. Энергия электрического поля.

Лабораторные работы (4ч.)

1. Определение ускорения свободного падения тел с помощью оборотного маятника. {работа в малых группах} (4ч.)[1,2] Изучение свойств физического маятника, их применение для определения ускорения свободного падения.

Самостоятельная работа (164ч.)

- 1. Проработка теоретического материала (работа с конспектом лекций, пособиями)(40ч.)[1,4,5,8,9] учебными учебником, Кинематика. Динамика материальной точки. Вилы механике сил В Работа энергия. Динамика вращения твёрдого тела Механика жидкостей газов. Элементы релятивистской И механики Механические колебания. Волновые процессы Молекулярно-кинетическая теория идеальных газов. Основы термодинамики. Электростатическое поле в вакууме, диэлектриках, проводниках. Общие свойства электрического тока. Законы постоянного тока. Электрический ток в средах.
- **2.** Подготовка к практическим занятиям.(10ч.)[4,6] Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.
- **3.** Подготовка к лабораторным занятиям, включая подготовку к защите работ(12ч.)[2,3] Определение ускорения свободного падения тел с помощью оборотного маятника.
- **4. Выполнение индивидуального домашнего задания (контрольной работы)** «Физика»(30ч.)[1,5,6,7,8,9] Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.
- **5.** Самостоятельное изучение разделов дисциплины.(63ч.)[4,5,8,9] Механика. Механические колебания и волны. Молекулярная физика и термодинамика.

Электростатика. Постоянный электрический ток.

6. Подготовка к экзамену.(9ч.)[1,4,5,6,7] Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.

Семестр: 3

Объем дисциплины в семестре з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

	Виды занятий	Объем контактной работы		
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
6	4	4	166	20

Лекционные занятия (6ч.)

- 1. Электромагнетизм. {лекция с разбором конкретных ситуаций} (2ч.)[4,5] Магнитная индукция. Закон Ампера. Закон Био-Савара-Лапласа и его применение. Сила Лоренца. Виды магнетиков. Закон полного тока. Явление электромагнитной индукции. Закон Фарадея для ЭДС индукции. Самоиндукция и взаимоиндукция. Энергия магнитного поля. Колебательный контур. Формула Томсона. Образование электромагнитных волн.
- 2. Волновая оптика. Квантовая оптика. {лекция с разбором конкретных ситуаций} (2ч.)[4,5] Интерференция света. Интерференция в тонких пленках. Применение интерференции света. Дифракция от сферического и плоского фронтов волны. Поляризация света при отражении и в анизотропных средах. Анализ поляризованного света. Тепловое излучение. Абсолютно черное тело. Законы теплового излучения. Виды фотоэффекта. Законы Столетова для фотоэффекта. Формула Эйнштейна для внешнего фотоэффекта. Давление света. Эффект Комптона.
- **3. Атомная и ядерная физика.** {лекция с разбором конкретных ситуаций} (2ч.) [4,5] Спектры излучения водородоподобных атомов. Постулаты Бора. Теория атома водорода по Бору. Элементы квантовой механики. Квантовые числа и их физический смысл. Принцип Паули и таблица химических элементов Менделеева. Протонно-нейтронная структура ядер атома. Закон радиоактивного распада. Энергия связи ядер. Реакция деления ядер. Термоядерные реакции синтеза атомных ядер.

Практические занятия (4ч.)

1. Электромагнетизм. {тренинг} (4ч.)[6,7] Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях.

Лабораторные работы (4ч.)

1. Определение индуктивности катушки. {работа в малых группах} (4ч.)[3,7]

Изучение явления самоиндукции. Сопротивление при переменном токе. Измерение индуктивности катушки.

Самостоятельная работа (166ч.)

- 1. Проработка теоретического материала (работа с учебником, учебными пособиями).(34ч.)[4,5,8,9]
 жонспектом лекций, эмеций, эм
- **2.** Подготовка к практическим занятиям.(6ч.)[1,6,7] Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада

Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях.

- 3. Подготовка к лабораторным занятиям, включая подготовку к защите работ.(4ч.)[3,4] Определение индуктивности катушки.
- **4. Выполнение индивидуального домашнего задания (контрольной работы) «Физика».(40ч.)[1,4,5,7,8,9]** Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада.
- 5. Самостоятельное изучение разделов дисциплины. (73 ч.) [4,5,8,9] Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических
- **6. Подготовка к экзамену.(9ч.)[1,4,5,6,7]** Электромагнетизм.Волновая оптика. Квантовая оптика

Атомная и ядерная физика.

и магнитных полях.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Бахмат, В.И. Физика: [текст] метод. пособие и контр. задания для студентов -заочников строительных специальностей/ В.И. Бахмат. Рубцовск: РИО АлтГТУ, 2013. 80 с. (22 экз.)
 - 2. Бахмат, В.И. Механика и молекулярная физика: метод. указания к

выполнению лаборатор. работ по физике для студентов всех форм обучения техн. направлений/ В.И. Бахмат, В.В. Борисовский. - Рубцовск: РИО, 2015. - 39 с. URL: https://edu.rubinst.ru/resources/books/Bakhmat_V.I._Mekhanika_i_molekulyarnaya_phi zika_(lab.rab)_2015.pdf (дата обращения 10.08. 2021)

3. Бахмат, В.И. Электричество и магнетизм:метод. указания к лаборатор. работам по физике для студентов техн. направлений всех форм обучения/ В.И. Бахмат, В.В. Борисовский. - Рубцовск: РИО, 2015. - 27 с. URL: https://edu.rubinst.ru/resources/books/Bakhmat_V.I._Yelektrichestvo_i_magnetizm_201 5.pdf (дата обращения 10.08. 2021)

6. Перечень учебной литературы

- 6.1. Основная литература
- 4. Краткий курс общей физики : учебное пособие / И. А. Старостина, Е. В. Бурдова, О. И. Кондратьева [и др.] ; под редакцией Л. Г. Шевчук. Казань : Казанский национальный исследовательский технологический университет, 2014. 376 с. ISBN 978-5-7882-1691-1. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/63716.html (дата обращения: 07.08.2021). Режим доступа: для авторизир. пользователей
- 5. Ивлиев, А. Д. Физика : учебное пособие / А. Д. Ивлиев. 2-е изд., испр. Санкт-Петербург : Лань, 2021. 672 с. ISBN 978-5-8114-0760-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/167746 (дата обращения: 07.08.2021). Режим доступа: для авториз. пользователей.

6.2. Дополнительная литература

- 6. Иродов, И. Е. Задачи по общей физике : учебное пособие для вузов / И. Е. Иродов. 18-е изд., стер. Санкт-Петербург : Лань, 2021. 420 с. ISBN 978-5-8114-6779-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/152437 (дата обращения: 09.09.2021). Режим доступа: для авториз. пользователей
- 7. Кузьмичева, В. А. Практикум по общей физике: учебное пособие / В. А. Кузьмичева. Москва: Московская государственная академия водного транспорта, 2019. 233 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/97319.html (дата обращения: 07.08.2021). Режим доступа: для авторизир. пользователей

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 8. Научно-технический журнал «Успехи прикладной физики» https://advance.orion-ir.ru
- 9. Научный электронный журнал «Ученые записки физического факультета московского университета» http://uzmu.phys.msu.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (Φ OM) по дисциплине представлен в приложении A.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным			
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные			
	интернет-ресурсы (http://Window.edu.ru)			
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к			
	фондам российских библиотек. Содержит коллекции оцифрованных документов			
	(как открытого доступа, так и ограниченных авторским правом), а также каталог			
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения занятий семинарского типа
лаборатории
учебные аудитории для проведения групповых и индивидуальных консультаций
учебные аудитории для проведения текущего контроля и промежуточной аттестации
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного

процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».

ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Физика»

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОПК-4: способностью использовать законы		Комплект
и методы математики, естественных,	Экзамен	контролирующих
гуманитарных и экономических наук при	JK3aMCH	материалов для
решении профессиональных задач		экзамена

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Показатели оценивания компетенций представлены в разделе «Требования к результатам освоения дисциплины» рабочей программы дисциплины «Физика» с декомпозицией: знать, уметь, владеть.

При оценивании сформированности компетенций по дисциплине «Физика» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент твёрдо знает программный	75-100	Отлично
материал, системно и грамотно излагает		
его, демонстрирует необходимый		
уровень компетенций, чёткие, сжатые		
ответы на дополнительные вопросы,		
свободно владеет понятийным		
аппаратом.		
Студент проявил полное знание	50-74	Хорошо
программного материала, демонстрирует		_
сформированные на достаточном уровне		
умения и навыки, указанные в программе		
компетенции, допускает		
непринципиальные неточности при		
изложении ответа на вопросы.		
Студент обнаруживает знания только	25-49	<i>Удовлетворительно</i>
основного материала, но не усвоил		
детали, допускает ошибки,		
демонстрирует не до конца		
сформированные компетенции, умения		
систематизировать материал и делать		
выводы.		
Студент не усвоил основное содержание	<25	Неудовлетворительно
материала, не умеет систематизировать		
информацию, делать необходимые		
выводы, чётко и грамотно отвечать на		

заданные вопросы, демонстрирует	
низкий уровень овладения	
необходимыми компетенциями.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности.

№ пп	Вопрос/Задача	Проверяемые компетенции
1	Продемонстрируйте знания основных законов и методов математики, естественных наук при решении профессиональных задач, ответив на вопросы 1. Момент импульса и закон его сохранения. 2. Газовые законы идеального газа 3. Закон Ома для участка и полной цепи 4. Закон Био-Савара-Лапласа и его применение 5. Применение интерференции света 6. Квантовые числа и их физический смысл	ОПК-4
2	Используя основные законы и методы математики, естественных наук решите следующие профессиональных задачи: 1. Определите крутящий момент двигателя при известной мощности и угловой скорости вала 2. Определите работу теоретического цикла двигателя при известных термическом КПД и величине подведенной теплоты 3. Определите силу тока в полной цепи с при известных внешнем и внутреннем сопротивление и ЭДС источника тока	ОПК-4
3	Продемонстрируйте владение основными законами и методами математики, естественных наук при решении профессиональных задач определив требуемое усилие, для буксировки колесной машины с заблокированными колесами, при известной массе машины, коэффициенте трения колес и уклоне местности	ОПК-4

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.