Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ТФ

А.В. Сорокин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.О.16** «Химия»

Код и наименование направления подготовки (специальности): 23.03.02

Наземные транспортно-технологические комплексы

Направленность (профиль, специализация): Проектирование колесных и

гусеничных машин

Статус дисциплины: обязательная часть

Форма обучения: заочная

Статус	Должность	И.О. Фамилия	
Разработал	доцент	Н.Н. Аветисян	
	Зав. кафедрой «ЭЭ»	С.А. Гончаров	
Согласовал	руководитель направленности (профиля) программы	И.В. Курсов	

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.2	Применяет естественнонаучные и/или общеинженерные знания для решения задач профессиональной деятельности

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Математика для инженерных расчетов, Физика в
предшествующие	изучению	машиностроении
дисциплины,	результаты	
освоения которых	необходимы	
для освоения	данной	
дисциплины.		
Дисциплины (практ	тики), для	Безопасность жизнедеятельности, Материаловедение,
которых результаты	и освоения	Сопротивление материалов
данной дисциплин	ны будут	
необходимы, каг	к входные	
знания, умения и вла	адения для	
их изучения.		

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 3 / 108 Форма промежуточной аттестации: Зачет

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
заочная	4	0	4	100	12

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 2

Лекционные занятия (4ч.)

- 1. Основные законы естественнонаучной дисциплины "Химия". Окислительно-восстановительные реакции {лекция с разбором конкретных ситуаций} (1ч.)[3,4,5] Предмет химии и связь её с естественными и техническими науками, математический аппарат химии. Общие понятия (элемент, атом, молекула, моль, молярная масса элемента, вещества). Основные законы химии: закон сохранения энергии, закон постоянства состава, закон эквивалентов, закон Авогадро и его следствие, молярный объем газообразного вещества. Окисление и восстановление. Понятие о степени окисления элементов в соединениях. Типы окислительно-восстановительных реакций. Окислительные и восстановительные свойства простых веществ и химических соединений.
- **2. Металлы** {лекция с разбором конкретных ситуаций} (1ч.)[3,4,5] Положение металлов в периодической системе химических элементов. Нахождение металлов в природе и их получение. Общие свойства металлов. Химические свойства металлов.
- 3. Электрохимические процессы. Методы математического анализа и моделирования в профессиональной деятельности {лекция с разбором конкретных ситуаций} (2ч.)[2,4,5] Электрохимические системы. Гальванические элементы. Электролиз растворов и расплавов солей. Законы Фарадея. Выход металла по току. Химическая и электрохимическая коррозия

Практические занятия (4ч.)

- 1. Основные классы неорганических соединений {работа в малых группах} (2ч.)[5,7,8] Получение и изучение свойств оксидов, оснований, кислот и солей
- **2.** Окислительно-восстановительные реакции {работа в малых группах} (2ч.) [5,6,8] Изучение окислительных свойств ионов Mn7+, Fe3+, восстановительных свойств ионов I, Sn2+

Самостоятельная работа (100ч.)

- 1. Самостоятельное изучение теоретического материала (66ч.) [4,5,6,7,8] Самостоятельное изучение теоретического материала заключается в проработке конспектов лекций, практических занятий и литературы по соответствующим темам. Темы для самостоятельного изучения:
- Основные понятия и законы химии.
 Энергетика химических процессов. Химическое сродство.
- Химическая кинетика и фазовое равновесие. Катализ.
- Строение атомов и систематика химических элементов.
- Химическая связь.
- Основные характеристики растворов и других дисперсных систем.
- Водные растворы электролитов.
- Окислительно-восстановительные реакции.
- Металлы.

- Электродные потенциалы и электродвижущие силы.
- Электролиз.
- Коррозия металлов. Защита металлов и сплавов от коррозии.
- Высокомолекулярные соединения: полимеры и олигомеры.
- Химическая идентификация.
- **2. Контрольная работа**(**30ч.**)[**1,4,5,6,9**] Целью контрольной работы является закрепление знаний, полученных студентами на лекциях, практических занятиях и в процессе самостоятельной работы с рекомендуемой литературой.
- **3. Подготовка к зачету(4ч.)[4,5,6,7,8,9]** Подготовка заключается в проработке конспектов лекций, практических занятий и литературы по соответствующим темам

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Аветисян Н.Н. Химия [текст]: метод. пособие и контр. задания для студентов заоч. формы обучения техн. направлений/ Н.Н. Аветисян. Электрон. дан.. Рубцовск: РИО, 2014. 90 с. То же [Электронный ресурс]. URL: https://www.rubinst.ru/system/files/himiya_posobie_i_zadaniya_dlya_zaochnikov.pdf
- 2. Аветисян Н.Н. Гальванический элемент [текст]: Метод. пос. по химии для самостоятельной работы студентов технических направлений всех форм обучения/ Н.Н. Аветисян. Рубцовск: РИО, 2012. 31 с. То же [Электронный ресурс].

https://www.rubinst.ru/system/files/galvanicheskij_ehlement.pdf

3. Аветисян Н.Н. Окислительно-восстановительные реакции. Химические свойства металлов: [текст]: метод. указания по химии для самостоят. работ/ Н.Н. Аветисян. - Рубцовск: РИИ,РИО, 2015. - 43 с. То же [Электронный ресурс]. - URL: https://www.rubinst.ru/system/files/ovr himicheskie svojstva metallov.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 4. Глинка, Н.Л. Общая химия: Учебник/ Н.Л. Глинка. 2-ое изд., испр. и доп.. М.: Интеграл-Пресс, 2002. 727 с. (99 экз.)
- 5. Минаевская, Л. В. Общая химия. Для инженерно-технических направлений подготовки и специальностей: учебное пособие / Л. В. Минаевская, Н. А. Щеголихина. Санкт-Петербург: Лань, 2020. 168 с. ISBN 978-5-8114-3837-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/126907 (дата обращения: 14.08.2021). Режим

доступа: для авториз. пользователей.

6. Щеголихина, Н. А. Общая химия. Лабораторный практикум. Для инженерно-технических направлений подготовки и специальностей : учебнометодическое пособие / Н. А. Щеголихина, Л. В. Минаевская, М. В. Ткачёва. — Санкт-Петербург : Лань, 2019. — 92 с. — ISBN 978-5-8114-3828-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/125705 (дата обращения: 14.08.2021). — Режим доступа: для авториз. пользователей.

6.2. Дополнительная литература

- 7. Ахметов, Н. С. Лабораторные и семинарские занятия по общей и неорганической химии : учебное пособие / Н. С. Ахметов, М. К. Азизова, Л. И. Бадыгина. 6-е изд., стер. Санкт-Петербург : Лань, 2021. 368 с. ISBN 978-5-8114-1716-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/168686 (дата обращения: 14.08.2021). Режим доступа: для авториз. пользователей
- 8. Стась, Н. Ф. Справочник по общей и неорганической химии : учебное пособие / Н. Ф. Стась. Томск : Томский политехнический университет, 2014. 93 с. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/34718.html (дата обращения: 14.08.2021). Режим доступа: для авторизир. пользователей
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - 9. https://xumuk.ru/
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям $\Phi \Gamma OC$, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение		
1	LibreOffice		
2	Windows		
3	Антивирус Kaspersky		

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным		
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные		
	интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к		
	фондам российских библиотек. Содержит коллекции оцифрованных документов		
	(как открытого доступа, так и ограниченных авторским правом), а также каталог		
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».

ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Химия»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	Зачет	Комплект контролирующих материалов для зачета

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Химия».

При оценивании сформированности компетенций по дисциплине «Химия» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал,	25-100	Зачтено
выполняет задания в соответствии с		
индикаторами достижения компетенций,		
может допускать отдельные ошибки.		
Студент не освоил основное содержание	0-24	Не зачтено
изученного материала, задания в		
соответствии с индикаторами		
достижения компетенций не выполнены		
или выполнены неверно.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Задания на применение естественнонаучных и общеинженерных знаний для решения задач профессиональной деятельности

Компетенция	Индикатор достижения компетенции		
ОПК-1 Способен применять естественнонаучные и	ОПК-1.2 Применяет естественнонаучные и/или		
общеинженерные знания, методы математического	общеинженерные знания для решения задач		
анализа и моделирования в профессиональной	профессиональной деятельности		
деятельности			

- **1.** Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, определите эквивалентную, атомную массу металла. При пропускании через раствор хлорида четырехвалентного металла тока силой 5 А в течение 10 минут на катоде выделилось 1,515 г. металла. Напишите уравнения процессов электролиза раствора соли (анод инертный) (ОПК-1.2).
- **2.** Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, закончите уравнение реакций, подберите коэффициенты в ОВР и укажите (ОПК-1.2):
 - а) число молекул кислоты, участвующих в реакции:

$$K + HNO_{3(p)} \rightarrow$$

б) число молекул щёлочи, участвующих в реакции:

$$Sn + NaOH \rightarrow$$

3. Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, закончите уравнение реакции, рассчитайте коэффициенты и укажите число молекул серной кислоты, участвующей в реакции (ОПК-1.2):

Al +
$$H_2SO_4(\kappa) \rightarrow$$

- **4.** Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, определите сколько времени (в минутах) пропускали ток силой 8 А через раствор, если масса никелевого анода уменьшилась на 0,8 г. Напишите уравнения процессов электролиза раствора NiSO₄ (анод никелевый) (ОПК-1.2).
- 5. Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, составьте схему и вычислите ЭДС гальванического элемента, состоящего из алюминиевой пластинки, погруженной в 10^{-6} М раствор соли алюминия, и водородного электрода, погруженного в раствор с рH = 2 (ОПК-1.2).
- **6.** Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, закончите уравнение реакций, подберите коэффициенты в ОВР и укажите (ОПК-1.2):
 - а) число молекул кислоты, участвующих в реакции:

Na +
$$H_2SO_{4(\kappa)} \rightarrow$$

б) число молекул щёлочи, участвующих в реакции:

$$Al + KOH + H_2O \rightarrow$$

7. Применяя естественнонаучные и общеинженерные знания для решения задач профессиональной деятельности, закончите уравнение реакции, рассчитайте коэффициенты и укажите число молекул серной кислоты, участвующих в реакции (ОПК-1.2):

$$Zn + H_2SO_4(\kappa) \rightarrow$$

4. Файл u/или БТ3 с полным комплектом оценочных материалов прилагается.